
API for ESI-USB, 6 March 2020

API for ESI-USB Sensor

Introduction

 The application programming interface or API for the ESI-USB pressure

sensor is a Windows DLL (dynamic link library) written in C++. The library

provides a set of functions that may be used to integrate the use of the sensors

into client applications. This library can be called from any language or

programming environment that can make use of DLLs. This includes C#, C++,

VB.NET and LabVIEW.

Error Codes

 The following error codes can be returned by the library functions.

Value Name Description

0 OK The operation succeeded.

-1 FAIL The operation failed.

-2 INVALID_INDEX The operation failed due to an invalid sensor

index.

-3 INVALID_PARAMETER The operation failed because one of the

parameters is out of range or otherwise invalid.

-4 INVALID_STATE The operation failed because the sensor is in an

invalid state. This will occur, for example, if a

reading is attempted from a sensor that is not in

use.

Library Functions

 This section lists the functions that will be implemented by the library.

The client code will control the sensor by calling these functions in the

appropriate order.

Set-Up and Initialisation

Name FindSensors

Parameters int* SensorCount

Returns A status code showing success or error.

Comments This is called to find connected sensors. This must be the first all

made to the library by the client application. The function first

finds which serial ports are present in the system. For each port it

attempts to open and read data back from a pressure sensor. The

value of the SensorCount parameter is set to the number of

sensors that were detected. The details of the sensors can then

be retrieved. Note that only sensors that are not already being

used by another application will be detected. When this function

returns the library is not using any of the sensors. UseSensor

must be called before any readings are taken.

Name FindSensorsEx

Parameters int SensorType, int* SensorCount

Returns A status code showing success or error.

Comments This is the same as FindSensors except for the SensorType

parameter. This may be set to zero to only find slow sensors or to

one to find fast sensors.

Name GetSensorInfo

Parameters int SensorIndex, int* PortNumber, char* SerialNumber, int

SerialNumberLength

Returns A status code showing success or error.

Comments This function returns the serial port number and serial number of

a particular sensor. The SensorIndex is a zero-based index (if

API for ESI-USB, 6 March 2020

there are two sensors detected then valid indices are zero and

one) specifying which of the sensors found by FindSensors is

intended. The serial port number is returned in the PortNumber

parameter. SerialNumber is a character array and

SerialNumberLength is the number of characters in the array.

This should be at least eight characters long for the current length

of serial numbers.

Name GetSensorInfoEx

Parameters int SensorIndex, int* PortNumber, char* SerialNumber, int

SerialNumberLength, int* IsFast

Returns A status code showing success or error.

Comments This is the same as GetSensorInfo except for the addition of the

IsFast parameter. This is set to one to indicate the sensor is a fast

sensor and zero if it is not.

Name UseSensor

Parameters int SensorIndex

Returns A status code showing success or error.

Comments This function tells the library that the specified sensor is to be

used. When this is called the library opens communications with

the sensor over the corresponding serial port. An error will be

returned if the sensor is already in use by the library.

Name IsSensorUsed

Parameters int SensorIndex, int* Used

Returns A status code showing success or error.

Comments This function reads back whether a particular sensor has been

selected to be used with the library. The Used parameter is set to

one if the sensor is in use and zero if it is not.

Name ReleaseSensor

Parameters int SensorIndex

Returns A status code showing success or error.

Comments This function releases a specified sensor. The communications

with the sensor are closed and it could then be used by another

application if required. An error will be returned if the sensor is

not in use by the library.

Information

Name GetAPIVersion

Parameters char* Version, int Length

Returns A status code showing success or error.

Comments This function returns the version of the API in the Version

parameter. The Version parameter is an array of characters. The

Length parameter contains the array length. This should be long

enough to hold the version information.

Name GetPressureRange

Parameters int SensorIndex, float* Range

Returns A status code showing success or error.

Comments The SensorIndex specifies the sensor in question. The value of

the Range parameter is set to the full range of the sensor in bar.

Name GetPressureUnits

Parameters int Units, char* UnitString, int UnitStringLength

Returns A status code showing success or error.

API for ESI-USB, 6 March 2020

Comments This function is given a pressure units code and returns a string

containing the units in text form in the UnitString parameter. The

UnitStringLength parameter is the number of characters in the

UnitString array. The units codes are as below:

0 bar

1 mbar

2 psi

3 MPa

4 Pa

5 mm H2O

6 mm Hg

7 atm

8 km cm2

9 kPa

Name GetTemperatureUnits

Parameters int Units, char* UnitString, int UnitStringLength

Returns A status code showing success or error.

Comments This function is given a temperature units code and returns a

string containing the units in text form in the UnitString

parameter. The UnitStringLength parameter is the number of

characters in the UnitString array. The units codes are as below:

0 Celsius

1 Kelvin

2 Fahrenheit

Name GetManufactureDate

Parameters int SensorIndex, long long* date

Returns A status code showing success or error.

Comments This function gets the date of manufacture for the specified

sensor. The returned value is the number of 100-nanosecond

intervals that have elapsed since January 1, 0001 at

00:00:00:000 in the Gregorian calendar.

Name GetCalibrationDate

Parameters int SensorIndex, long long* date

Returns A status code showing success or error.

Comments This function gets the date of calibration for the specified sensor.

For details on the returned value see GetManufactureDate.

Name GetManufactureLabVIEWDate

Parameters int SensorIndex, long* date

Returns A status code showing success or error.

Comments This is the same as GetManufactureDate except the time is

returned as the number of seconds since the start of 1904 for

compatibility with LabVIEW.

Name GetCalibrationLabVIEWDate

Parameters int SensorIndex, long* date

Returns A status code showing success or error.

Comments This function gets the date of calibration for the specified sensor.

For details on the returned value see

GetManufactureLabVIEWDate.

Operation

Name Read

Parameters int SensorIndex, int Units, bool Absolute, double Temperature,

API for ESI-USB, 6 March 2020

float* Pressure

Returns A status code showing success or error.

Comments This function reads and returns the pressure in the selected

engineering units. The SensorIndex specifies the sensor to be

read. The Units parameter selects the choice of units from the list

given above for the GetPressureUnits function. The Absolute

parameter selects whether to return an absolute or a gauge

reading. If Absolute is zero then a gauge value is returned,

otherwise an absolute value is returned. The Temperature

parameter is the temperature in Celsius. The measured pressure

in the specified units is returned in the Pressure parameter. The

library must have first called UseSensor for the specified sensor

before a reading can be taken.

Name ReadTemperature

Parameters int SensorIndex, int Units, float* Temperature

Returns A status code showing success or error.

Comments This function reads and returns the temperature in the selected

engineering units. The SensorIndex specifies the sensor to be

read. The Units parameter selects the choice of units from the list

given above for the GetTemperatureUnits function. The

temperature is returned in the final parameter. The library must

have first called UseSensor for the specified sensor before a

reading can be taken.

Name SetGaugeDifferential

Parameters int SensorIndex, double Differential

Returns A status code showing success or error.

Comments This sets the difference between absolute and gauge pressures in

bar. The SensorIndex specifies the sensor in question. The value

is used in the Read function when giving absolute values.

Name StartMonitoring

Parameters double PressureInterval, double TemperatureInterval

Returns A status code showing success or error.

Comments Fast sensors can be set to continually read and store pressure and

temperature values. Calling this function starts the monitoring

process for all sensors currently being used by the library. The

pressure interval is in seconds. It must be set in the range 0.001

to 0.2 seconds. The temperature interval is also in seconds. This

should be in the range 0 to 25.5 seconds. A value of zero indicates

that temperature isn’t to be read during the monitoring process.

Once the monitoring process is underway, GetMonitorData is

called to get the readings and StopMonitoring is called to stopt he

acquisition.

Name StopMonitoring

Parameters None

Returns None.

Comments Stops a monitoring session previously started with

StartMonitoring.

Name GetMonitorData

Parameters int SensorIndex, float* Time, float* Pressure, float* Temperature,

int* Length, int Units, int Absolute, int Units2

Returns A status code showing success or error.

Comments During the monitoring process the library reads back and stores

API for ESI-USB, 6 March 2020

the pressure and temperature values. This function is called to

retrieve the values for a particular sensor. The calling code would

need to periodically read back the data for each sensor. The

SensorIndex parameter sets which sensor’s data is required. The

Time, Pressure and Temperature parameters are arrays which will

be filled with the sensor data. The time is the time in seconds

since measurement was begun. The Length parameter contains

the length of the time, pressure and temperature arrays. On

return it is set to the number of readings that were returned. If

the input arrays are longer than the number of readings available

then all data will be returned. If the arrays are shorter than the

number of readings available then the arrays will be filled and

there will still be data stored within the library. If this function is

called when there are no readings available the length will be set

to zero. Units sets the required pressure units. Units2 sets the

required temperature units. Absolute sets whether absolute or

gauge readings are required.

Name GetActualRate

Parameters double RequestedRate, double* ActualRate

Returns A status code showing success or error.

Comments The sensor can only run at certain discrete sample rates. When

called this function sets the ActualRate to the rate in Hertz that

will be achieved for the given RequestedRate. RequestedRate is

also in Hertz.

Name ZeroSensor

Parameters Int SensorIndex, int Count, double Interval

Returns A status code showing success or error.

Comments This function sets the pressure input of the specified sensor to

zero. A number of readings are taken and their average is then

used to adjust the calibration coefficients stored on the sensor.

SensorIndex selects the sensor. Count sets the number of

measurements to take and Interval is the time in seconds

between measurements. Suggested values are to set Count to 10

and Interval to 0.2. The current pressure reading must be within

10% of the sensor’s full scale reading. If it is outside this range

then INVALID_STATE will be returned.

Clean-Up

Name CleanUp

Parameters None

Returns A code indicating error or success.

Comments This function must be called when the application code has

finished using the library. This closes communications and cleans

up all system resources.

